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Abstract

This paper presents a simple technique for generating anisotropic surface
triangulations using unstructured quadrilaterals when the CAD entity can
be mapped to a logical rectangle. Watertightness and geometric quality
measures are maintained and are consistent with the CAPRI default tes-
sellator. These triangulations can match user specified criteria for chord-
height tolerance, neighbor triangle dihedral angle, and maximum triangle
side length. This discrete representation has hooks back to the owning ge-
ometry and therefore can be used in conjunction with these entities to allow
for easy enhancement or modification of the tessellation suitable for grid
generation or other downstream applications.

Introduction

The premier design goal for the Computational Analysis PRogramming Interface
(CAPRI) [1] is that geometry access be appropriate for CAE developers. The
complete Computational Geometry (CG) perspective is avoided while maintain-
ing full functionality. Early in the design and implementation of CAPRI, it be-
came obvious that providing an Application Programming Interface (API) that
only gives the programmer access to the geometry and topology of a solid part
was insufficient. The burden of deciphering the CAD data and attempting to
generate a discrete representation of the surfaces required for mesh generation
was too great. Fortunately, many grid generation systems (used in CFD and
other disciplines) can use STL (Stereo Lithography) files as input. Combining a
discretized view of the solid part as well as it’s geometry and topology can provide
a complete, and easier to use, access point into the CAD data. A tessellation of
the object that contains not only the mesh coordinates and supporting triangle
indices but other data, such as the underlying CAD surface parameters (for each
point), as well as the connectivity of the triangles, assists in traversing through
and dissecting the CAD representation of a part.

An important aspect of CAPRI is that it provides CAD vendor neutral access to




all of the data obtained from the models that is to be passed back to the appli-
cation. The triangulation generated by CAPRI is guaranteed to be watertight,
regardless of the CAD kernel in use. Some CAD system geometry kernels can
provide data of this quality (i.e., UniGraphics, Parasolid, CATIA and Comput-
erVision). Other CAD systems can provide the data, but it is not of sufficiently
high quality to use. (For example, Pro/Engineer requires one to buy Pro/MESH
to get a closed triangulation.) Finally, SDRC’s Open I-DEAS API does not pro-
vide access to a triangulation at all. The fact that not all CAD systems provide
such a tessellation has forced the development of a surface triangulator within
CAPRI for CAD solid parts that does meet all of the quality requirements.

It should be noted that CAPRI’s tessellations are not intended as the starting
point for computational analysis (though they could be used in some cases).
CAPRI sees only geometry, and it cannot anticipate the smoothness, resolution
or other requirements of the downstream application(s). The triangulations ap-
proximate the geometry only; some processing of the tessellation is expected in
order to refine the triangulation to a state suitable for the physical problem be-
ing investigated. The triangulation can be enhanced through either physical or
parameter space manipulation, using point “snap” and (u, v) surface evaluations
routines provided by the CAPRI API [2]. The triangulation technique used within
CAPRI displays the following characteristics [3):

e Robust. It is imperative that the scheme work for all possible topologies
and provide a tessellation that can be used.

e Correct. The triangulation is of no use if it is not true to the CAD model.
The tessellation must be logically correct; i.e. provide a valid triangulation
in the parameter space (u,v) of the individual surface. It must also be
geometrically correct; i.e. depict a surface triangulation that truly approx-
imates the geometry. This involves ensuring all facets have a consistent
orientation with no creases or abrupt changes in triangle normals. Correct-
ness in both physical and parameter space allows CAPRI based application
enhancement schemes to operate in either or both.

e Adjustable. To minimize the post-processing of CAPRI’s tessellation for
a specific discipline or analysis, some a priori adjustment of the resultant
quality is available. It must be noted however, that any criteria may not
be met (especially near the bounds of a CAD object) due to issues of
closure and solid model accuracy. This goal may conflict with the more
important characteristic of being watertight and having a smooth surface
representation. The parameters are:

— Maximum triangle side length. Any triangle sides (not on a CAD
Edge) longer (in (z,y, z)) than a specified value are bisected.

— Maximum dihedral angle between two triangles. Any two triangles
on the same CAD Face whose (z,¥, z) facet normals differ by more
than the input value will be broken up.




— Chord-height tolerance. When the deviation between triangle center
and actual surface (in (z, y, z)) is greater than the specified value then
the triangle is subdivided by inserting the center point.

e No geometric translation. To truly facilitate hands-off grid generation, any-
thing that requires user intervention must be avoided. All data maintained
within CAPRI is consistent with the CAD’s solid model representation. An
alternate or translated representation is not used, because then the result
will be something different than resides within CAD.

e Watertight. Triangulated CAD solids are closed and conformal; having
this characteristic allows for meshing without “fixing” geometry. For the
tessellation of a solid object, this means that all Edge (trimming) curves
terminate at consistent coordinates of the bounding Nodes and a single
discretization for Edge curves be used on both surfaces sharing the com-
mon Edge. Each triangle side in the tessellation is shared by exactly two
triangles, and the star of each vertex is surrounded and bounded by a sin-
gle closed loop of sides. The triangulation is everywhere locally manifold.
In a manifold triangulation, there are no voids, cracks or overlaps of any
triangles that make up the solid.

Figure 1. Isotropic Triangulatio using default Tessellation scheme.
# points = 6424, # triangles = 12639, Total CPU time = 3.8 sec.

As can be seen in Figure 1 the dihedral angle based refinement is sensitive to
anisotropic curvature in the surface. Since the simple subdivision rules do not
attempt to align inserted vertices with the direction of principle curvature, surface
bends, cylindrical trailing edges, fillets and a surface with any linear feature
require a large number of triangles to satisfy the angle metric. When combined
with the isotropic nature of the MinMax triangulation in (u, v), this misalignment
can make dihedral-angle based refinement expensive and provide results with high
counts.




The CPU time to generate the complete tessellation of the solid (4 Faces) is
3.8 secl. A careful timing analysis indicates that as the number of triangles
increases on a Face, the proportion of time spent swapping for surface recovery
grows rapidly. While triangulation speed has been improved through the use
of recursive swaps, many triangles will still be required at anisotropic surface
features without a more sophisticated site insertion strategy [3].

Figure 2. Triangulation based on a Trans-Finite Interpolation scheme.
# points = 340, # triangles = 608, Total CPU time = 0.1 sec.

In an attempt to mitigate this problem a simple Trans-Finite Interpolation (TFI)
scheme was implemented. The TFI procedure takes the (u, v)s along the bounds
of the quadrilateral face and interpolates (u,v)s to interior points. These new
parameter pairs can be used to evaluate to physical coordinates and therefore
simply (and quickly) fill the Face with sub-quadrilaterals. These cells can be
further subdivided to produce a triangular mesh. This initial scheme has the
following restrictions:

1. Face must have only one bounding Loop (i-e. no holes})
2. The Loop must contain 4 Edges

3. Number of points found in opposing Edges must match

These limitations ensure few Faces can use this algorithm. But, the results are
both enlightening and encouraging for Faces (with linear features) when the
scheme can be employed. This can clearly be seen in Figure 2 where the re-
sultant mesh is more regular, the counts are significantly reduced, the time to
generate is a small fraction of the original, while satisfying the same geometric
quality metrics. It should also be noted that the triangles generated are far from
isotropic in particular those at the leading edge of the wing.

LAll timings in this paper are generated on a 1.8GHz Pentium 4m running LINUX.




Another less obvious advantage of this type of scheme is consistency. Any change
in geometry will produce an entirely different triangulation using the standard
scheme. The topology of the TFI mesh is driven only by the bounds of the quadri-
lateral Face. Therefore, if the point count at the Edges remain constant then the
interior triangulation is consistent. This can be useful in design settings when
differencing is employed to determine parameter sensitivities. This is because
point movement within a Face can be tracked.

Unstructured Quadrilateral Patch Fill

The easiest way to ensure a watertight triangulation of a solid is to first discretize
the Edges that bound each Face. Face tessellations can then be performed using
the Edge points and filling in the interior without regard to the neighboring Faces.
In an attempt to capture more Faces using the TFI scheme it is obvious that the
restrictions need to be relaxed.

Since we do not wish to change the manner in which the general triangulation
scheme is done, it would helpful to find a TFI-like method that does not have
restriction #3. This method must alsoc be able to produce near-normal sub-
quadrilateral elements near the bounds of the Face in (u,v) so that linear features
(found at the Edges) can propagate into the Face in an anisotropic manner:

One Set of Opposite Sides Match

In this simplest case, one set of opposing quadrilateral sides match in point count
— the other does not. If we assume that the largest of the mismatching sides is
found at the right then the blocking that can be used to subdivide the Face is
seen in Figure 3.
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Figure 3. Generic block template and example of one set of opposite sides
having the same point count.




By examining the block template (the left side of Figure 3) one can see that the
additional points in the larger side are connected back to themselves by making
a loop of elements. This loop is brought back to about 1/3 of the way in the
opposite direction so that these elements do not penetrate too far to the left.
Also the turning of the loop does not end up too close to the generating side so
that the quads at the right side can be close to normal. The picture seen on the
right-hand side of Figure 3 is a completed mesh using this block template. The
size of each block is determined by either 1/3 of the appropriate side count or
1/2 of the difference between the opposing sides. Note that an odd difference is
made even (by reducing the count by 1). This point is placed back into the final
mesh by subdividing the appropriate sub-quad into 3 triangles instead of 2.

After each sub-block is populated, the result is improved by applying a Laplacian
smoother.

It should be noted that the constraint of the side with the largest count being
on the right is one of convenience. A set of up to 3 90° rotations can take any
configuration and place in the above situation.

Opposite Sides Differ by a Constant

Another simple case to consider is when opposing sides differ by the same count.
The blocking can be found in the left-hand picture of Figure 4. Here we assume
that the largest side is on the right and the largest side from the 2 others can
be found at the bottom. Again this constraint is artificial. A set of up to 3 90°
rotations and a reflection can take any configuration and place in this setting.
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Figure 4. Generic block template and example of where opposite sides
differ by the same point count.

For this case, it can be seen that the additional points generate elements that loop
from the bottom and end up at the right quadrilateral side. The picture seen on




the right-hand side of Figure 4 is a completed mesh using this block template and
is constructed in a similar manner to the first case.

General Case

The blocking for the general case can be found in the left-hand picture of Figure 5.
This is, in fact, the combination of both of the simpler cases described above.
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Figure 5. Generic block template and example of the General case.

As in the last case, we assume that the largest side is on the right and the largest
side from the 2 others can be found at the bottom. This is not a constraint; a
set of up to 3 90° rotations and a reflection can take any 4 discretized sides and
place in this configuration.

17 blocks are required in order to subdivide the original quadrilateral and both
simpler cases can be seen imprinted in the blocking. The circular loop is obvious
on the right as depicted in Figure 3 and the set of elements coming up from the
bottom can still be tracked to the right of the original quadrilateral. Here it is
clear that the elements get further broken up when the circular loop intersects
this group of elements.

The picture on the right-hand side of Figure 5 is a completed mesh using this block
template and is constructed in a similar manner to the first case; fill each block
and then apply a Laplacian smoother. One can clearly see that local orthogonality
has been maintained and those places that deviate from normal to the Face sides
are far from those sides.

This scheme can deal with any 4 sides discretized with any number of points
except for these conditions:

¢ A side has less than 4 points. This is because the basic method requires at
least 3 blocks on a side unless the true TFI algorithm can be applied.




e The number of points on opposing sides differs greatly. It is possible to
have situations where this scheme does not reduce the vertex/triangle count
over the default triangulation. This occurs when there is a great disparity
between opposing side counts. It has been found that when the side vertex
count ratio (largest/smallest) gets greater than 3 the benefit begins to be
minimized. This heuristic is used to limit the use of the anisotropic scheme.

Loops that do not have 4 Edges

In an attempt to further remove the constraints of this TFI-like anisotropic tri-
angulation scheme we now look at restriction #2:

3 Edges

Under the limited set of circumstances that a Face with 3 Edges contains a de-
generate Node; the Face can be viewed as a quadrilateral and the technique
described in the previous section can be used. Degenerate mappings can at the
tip of a conical surface and the pole of a spherical surface. This can be identified
by a discontinuity in the values of (u,v) on either side of the Node.

When this situation is found, the following technique can be used:

e Create a virtual side at the degenerate Node. A new side is created with
the same number of vertices as the side that is now opposing. The (u,v)s
copied from the opposite side and appropriate parameter (the one not in-
crementing/decrementing) is set to that found with the Node.

e Perform TFI or One Set of Opposite Sides Match scheme.

¢ Deflate the virtual side. When the sub-element quadrilaterals are broken
up, any triangles that have an edge on the virtual side are not included in
the final tessellation.

More than 4 Edges

If one can determine sets of Edges that are part of a larger continuous curve
in physical space, these can be considered a single quadrilateral side. If after
analyzing all Edges there are 4 sides then the schemes described in this paper can
be applied.

The technique used to examine each pair of Edges is simple and requires the
following to be true:
o Is the Edge an isocline (have roughly a constant u or constant v)?

o Is the pair the same type of isocline? If so, then the pair can be considered
part of a single quadrilateral side.




Example — A Turbine Blade

The following question needs to be asked; can the methods outlined in this paper
show real benefits for actual CAD parts? To answer this question we will use
an example from turbomachinery. The turbine blade part contains not only the
aerodynamic shape but also the hub and tip casements including the fir tree.
The full geometry (generated in Pro/ENGINEER) can be seen in the left-hand
picture of Figure 6 and a blow-up of the hub/leading-edge region can be seen on
the right.

Figure 6. A turbine blade CAD part on the left. There are 94 Faces the
represent the solid. On the right is a blow-up of the blade leading-edge hub
junction where the fillets can be seen.

Figure 6 shows that the fillet between the hub and the aerodynamic shape as
broken up into quadrilateral patches (this is seen with most all CAD systems).
The set of trimming curves along the upper bounds of the fillets is a single entity
as far as the aero shape is concerned (broken up to maintain the manifold aspect
of the solid). It should also be noted that the aero shape is split at the leading
edge into suction and pressure surfaces each reflected in a single CAD Face.

The left-hand side of Figure 7 shows the isotropic triangulation of the blade
surfaces and the fillets for the hub blown-up view. The entire tessellation of the
solid contains 66308 triangles and took 60.1 CPU seconds. On the right one can
see the triangulation of the same Faces (all using the anisotropic scheme). The
complete solid contains 22262 triangles and took only 2.53 CPU seconds being
able to treat 56 of the 94 Faces as quadrilateral patches. From the performance
improvement one can assume that the Faces that consumed most of the time for
the isotropic triangulation were handled by the quadrilateral scheme (the suction
and pressure surfaces).

The pressure surface is properly handled even though it is bounded by more
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Figure 7. The surface mesh displayed on the Blade surface and some of
the fillets. The picture on the left displays the results from the isotropic
tessellation scheme. Seen on the right are the same Faces triangulated with
the anisotropic method.

than 4 Edges (3 Edges can be seen at the mating with the fillet Faces). An
abrupt spacing change can noted in this Face’s triangulation and looks odd at
first inspection. The location of this change is at the position where the fillet
Faces are subdivided. Remember that the interior points of a TFI algorithm are
driven by the spacing at the frame. In this case each Edge has been discretized
separately and there is much more curvature near the leading edge producing a
finer set of points. The fillet Edge interior to the leading edge sees much less
curvature and hence displays a coarser spacing.

It is easy to imagine that both the performance gain and the ratio of quadrilateral
Faces to total CAD Faces to be high in this example. In the area of performance
this may be true; if the suction and pressure surfaces of the blade had cooling
holes neither of the Faces could have used the anisotropic method. But, after
a (non-rigorous) survey of CAD parts a ratio of around 50% is appears to be
average.

Discussion

The anisotropic quadrilateral patching method described in this paper has been
integrated into CAPRI, but it is not fully automatic. This is due to the possi-
ble situation where the quadrilateral approach cannot be applied and the default
triangulation method must be used. Due to the isotropic nature (in (u,v)) of
the tessellation scheme the Edge discretization must be finer in regions of high
surface curvature so the geometry can be captured. That is the default. So with-
out (hands-on) intervention fewer CAD Faces employ the quadrilateral scheme
because the constraint based on the number of points on opposing sides




differ greatly becomes invoked.

Effort is underway to integrate the two surface meshing schemes so that it can
become fully automatic. This is difficult because the Edge discretization is done
before the Faces are tessellated (a requirement of the watertight attribute). The
last phase of the Edge discretization is the examination of the local curvature
of both of the Faces that touch the Edge. If curvature is found then the Edge
tessellation continues to be enhanced. This is not only not necessary for the
quadrilateral method, but can significantly reduce its quality if employed.

This also brings up the possibility of taking the current default surface triangula-
tion and supporting anisotropic meshing. One of the swapping techniques used in
the isotropic triangulation scheme drives the tessellation toward Delauney (Min-
Max). This is done in the underlying surface’s parameter space (u,v). Since
the parameter space is artificial (i.e. not physical) it could actually be any 2D
mapping. Therefore a transformation from a 2D space that could support an
anisotropic stretching to the surfaces parameter space would be all that is re-
quired to achieve the anisotropy found in the quadrilateral patch method. One
could base the transform on the spacing found at the (u,v) rectangular bounds
for the Face.

Finally, if this is successful, then the last phase of the Edge discretization may
be able to be removed. Or, could be modified so that the spacing reflects the
transformed 2D space. This then could mitigate restriction #1.
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